```
zestaw 15)
a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,5 cm, h = 1 cm, I = 9 A
```

zestaw 16) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,6 cm, h = 1 cm, I = 9 A

zestaw 17) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,7 cm, h = 1 cm, I = 9 A

zestaw 18) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,8 cm, h = 1 cm, I = 9 A

zestaw 19) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,9 cm, h = 1 cm, I = 9 A

zestaw 20) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 1,0 cm, h = 1 cm, I = 9 A

zestaw 21) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,5 cm, h = 0,6 cm, I = 9 A

zestaw 22) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,5 cm, h = 0,7 cm, I = 9 A

zestaw 23) a = 1 cm, b = 3.5 cm, c = 0.5 cm, g = 0.5 cm, h = 0.8 cm, I = 9 A

zestaw 24) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,5 cm, h = 0,9 cm, I = 9 A

zestaw 25) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,5 cm, h = 1 cm, I = 9 A

zestaw 26) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,5 cm, h = 1,1 cm, I = 9 A

zestaw 27) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,5 cm, h = 1,2 cm, I = 9 A

zestaw 28) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,5 cm, h = 1,3 cm, I = 9 A

zestaw 29) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,5 cm, h = 1,4 cm, I = 9 A

Indukcyjność żłobka maszyny prądu stałego

Analiza rozproszenia żłobkowego - model analityczny i numeryczny uzwojenia w maszynie

I Metoda analityczna

Na Rys.1 przedstawiono przekrój poprzeczny żłobka maszyny prądu stałego, wypełnionego częściowo uzwojeniem. Wyznaczymy indukcyjność rozproszenia takiego żłobka. Zadanie rozwiążemy metodą rozdzielenia zmiennych, a następnie przedstawimy rozwiązanie metodą elementów skończonych przy całkowym sformułowaniu problemu. Dla uproszczenia analizy przyjmujemy następujące założenia:

- 1. Żłobek jest dostatecznie długi aby zagadnienie traktować jako dwuwymiarowe.
- 2. Przenikalność magnetyczna ferromagnetyka otaczającego żłobek jest nieskończenie wielka.

3. Indukcja w szczelinie między główkami zębów jest wielkością stałą.

4. Gęstość prądu jest stała w przekroju poprzecznym uzwojenia.

Przy powyższych założeniach wygodnie jest prowadzić analizę rozkładu pola magnetycznego wykorzystując wektorowy potencjał pola magnetycznego A (B = rot A). Ma on bowiem w tym układzie tylko jedną składową prostopadłą do płaszczyzny

przekroju poprzecznego żłobka. Pole magnetyczne w obszarach bezprądowych I i III opisywane jest równaniem Laplace'a, a w obszarze uzwojenia II – równaniem Poissona (por. Rys.1):

$$\nabla^2 A_{\rm I} = 0 , \qquad \nabla^2 A_{\rm II} = -\mu_0 J \qquad \nabla^2 A_{\rm III} = 0 , \qquad (1)$$

gdzie:
$$J = \frac{I}{2ag}$$
 - gęstość prądu.

$$\nabla^2 A = \frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2}$$
(2)

Z założenia drugiego wynika zerowanie się składowej stycznej natężenia pola magnetycznego na powierzchni ferromagnetyka. Składowe wektora indukcji magnetycznej wyznacza się ze wzorów:

$$B_x = \frac{\partial A}{\partial y}, \qquad \qquad B_y = -\frac{\partial A}{\partial x}.$$
 (3)

Otrzymujemy zatem następujące warunki brzegowe dla potencjału wektorowego A:

$$\frac{\partial A}{\partial x} = 0 \qquad \text{dla } x = \mp a$$

$$\frac{\partial A}{\partial y} = 0 \qquad \text{dla } y = b, \ c < |x| < a \qquad (4)$$

$$\frac{\partial A}{\partial y} = 0 \qquad \text{dla } y = 0.$$

Z założenia trzeciego i z prawa przepływu wynika :

$$\frac{\partial A}{\partial y}\Big|_{y=b} = -\frac{\mu_0 \mathbf{I}}{2c} \qquad \qquad \text{dla} \mid x \mid < c.$$

Rozwiązując równania dla potencjału wektorowego metodą rozdzielenia zmiennych, rozwiązania w poszczególnych obszarach przewidujemy w postaci:

$$A_{\rm I} = \sum_{n=1}^{\infty} \left(A_n ch \frac{n\pi y}{a} + B_n sh \frac{n\pi y}{a} \right) \cdot \cos \frac{n\pi x}{a} + A_0 + B_0 y$$

$$A_{\rm II} = \sum_{n=1}^{\infty} \left(C_n ch \frac{n\pi y}{a} + D_n sh \frac{n\pi y}{a} \right) \cdot \cos \frac{n\pi x}{a} + C_0 + D_0 y - \frac{1}{2} \mu_0 J y^2 \tag{5}$$

$$A_{\rm III} = \sum_{n=1}^{\infty} \left(E_n ch \frac{n\pi y}{a} + F_n sh \frac{n\pi y}{a} \right) \cdot \cos \frac{n\pi x}{a} + E_0 + F_0 y .$$

Na granicy obszarów powinien być spełniony warunek ciągłości potencjału wektorowego oraz składowej stycznej wektora natężenia pola magnetycznego.

Dane do zadań (oznaczenia jak na Rys. 1, str. 1)

zestaw 3)
$$a = 1 \text{ cm}, b = 3,5 \text{ cm}, c = 0,3 \text{ cm}, g = 1,5 \text{ cm}, h = 1 \text{ cm}, I = 9 \text{ A}$$

zestaw 5) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 1,5 cm, h = 1 cm, I = 9 A

Α

zestaw 7) a = 1 cm, b = 3,5 cm, c = 0,7 cm, g = 1,5 cm, h = 1 cm, I = 9 A

zestaw 8) a = 1 cm, b = 3,5 cm, c = 0,8 cm, g = 1,5 cm, h = 1 cm, I = 9 A

zestaw 10) a = 1 cm, b = 3,5 cm, c = 1,0 cm, g = 1,5 cm, h = 1 cm, I = 9 A

zestaw 11) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,1 cm, h = 1 cm, I = 9 A

zestaw 12) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,2 cm, h = 1 cm, I = 9 A

zestaw 13) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,3 cm, h = 1 cm, I = 9 A

zestaw 14) a = 1 cm, b = 3,5 cm, c = 0,5 cm, g = 0,4 cm, h = 1 cm, I = 9 A Możemy też uzyskać inne wielkości, np. przez całkowanie.

Z menu **Postprocessing** wybieramy **Subdomain integration** – całkowanie w wybranym obszarze. Możemy w ten sposób obliczyć energię zgromadzoną w polu magnetycznym żłobka (całkując gęstość energii: Magnetic energy density w obszarze żłobka: 3, 4, 5) – Rys. 7, oraz indukcyjność rozproszeniową – z równania (13), na podstawie policzonej energii.

Subdomain Integration		×				
Subdomain selection:	Expression to integrate					
	Predefined quantities:	Magnetic energy density				
3	Expression:	Wm_qa				
4 5	Compute volume integral (for axisymmetric modes)					
6	Solution to use					
	Solution at time:	0 🔽				
	Time:					
	Solution at angle (phase	e): 0 degrees				
•	Integration order: 🔽 A	uto 4				
		OK Cancel Apply				

Rys. 7 Subdomain Integration

Wartość obliczonej całki jest wyświetlana na pasku u dołu ekranu (Rys. 8) i jest poprzedzona komunikatem: Value of integral: .

Rys. 8 Wyświetlenie wartości całki

Opisuje to układ równań:

$$A_{\rm I} = A_{\rm II}, \qquad \frac{\partial A_{\rm I}}{\partial y} = \frac{\partial A_{\rm II}}{\partial y}, \quad \text{dla } y = h - g/2$$
 (6)

$$A_{\rm II} = A_{\rm III}, \qquad \frac{\partial A_{\rm II}}{\partial y} = \frac{\partial A_{\rm III}}{\partial y}, \text{ dla } y = h + g/2.$$
 (7)

Wykorzystując warunki brzegowe i warunki ciągłości do wyznaczenia nieznanych stałych, otrzymuje się ostatecznie następującą postać potencjału wektorowego w poszczególnych obszarach:

$$A_{\rm I} = \sum_{1} + A_0$$

$$A_{\rm II} = \sum_{1} -\frac{1}{2} \mu_0 J(y-e)^2 + A_0$$

$$A_{\rm III} = \sum_{1} -\mu_0 g J(y-h) + A_0 ,$$
(8)

gdzie:

$$\sum_{1} = -\frac{2\mu_0 a^3 Jg}{\pi^2 c} \sum_{n=1}^{\infty} \frac{\sin\frac{n\pi c}{a}}{n^2 sh\frac{n\pi b}{a}} ch\frac{n\pi y}{a} \cos\frac{n\pi x}{a}.$$
(9)

Energię zgromadzoną w polu magnetycznym żłobka wyznacza się ze wzoru:

$$W = \frac{1}{2\mu_0} \int_{V} B^2 dV = \frac{1}{2\mu_0} \int_{V} \left[\left(\frac{\partial A}{\partial x} \right)^2 + \left(\frac{\partial A}{\partial y} \right)^2 \right] dV = \frac{1}{2\mu_0} \int_{V} grad^2 A dV .$$
(10)

Korzystając ze wzoru Greena:

$$\int_{V} grad^{2}AdV + \int_{V} A\nabla^{2}AdV = \oint_{S} A \frac{\partial A}{\partial n} dS$$
(11)

otrzymujemy:

$$W = J \left[\int_{0}^{a} \int_{h-g/2}^{h+g/2} A_{\rm H} dx dy - \frac{ag}{c} \int_{0}^{c} A_{\rm HI} \Big|_{y=b} dx \right],$$
(12)

gdzie l jest zastępczą długością żłobka.

Indukcyjność rozproszeniową żłobka obliczamy z zależności:

$$L = \frac{2W}{\mathrm{I}^2} \,. \tag{13}$$

Po podstawieniu i scałkowaniu otrzymujemy:

$$L = \mu_0 l \left| \frac{6(b-h) - g}{12a} + \frac{a^2}{\pi^3 c^2} \sum_{n=1}^{\infty} \frac{\sin^2 \frac{n\pi c}{a}}{n^3} cth \frac{n\pi b}{a} \right|.$$
(14)

Powyższy wzór można zapisać następująco:

$$\frac{L}{l} = \mu_0 \frac{6(b-h) - g}{12a} + G_1(\beta, \gamma) \left[\frac{H}{m}\right], \tag{15}$$

gdzie :

$$G_{1}(\beta,\gamma) = 4 \cdot 10^{-7} \sum_{n=1}^{\infty} \frac{1}{n} \left[\frac{\sin(n\pi\gamma)}{n\pi\gamma} \right]^{2} \operatorname{cth}(n\pi\beta)$$

$$\beta = \frac{b}{a}, \qquad \gamma = \frac{c}{a}$$
(16)

Wartości pomocniczej funkcji $G_1(\beta, \gamma)$ dla wybranych parametrów β i γ :

β	0,5	1,0	2,0	3,0	4,0	6,0	10,0
0,1	8,226·10 ⁻⁷	7,883·10 ⁻⁷	7,867·10 ⁻⁷	7,863·10 ⁻⁷	7,859·10 ⁻⁷	7,845·10 ⁻⁷	7,782.10-7
0,2	5,451·10 ⁻⁷	$5,143 \cdot 10^{-7}$	$5,130.10^{-7}$	$5,129.10^{-7}$	$5,127 \cdot 10^{-7}$	$5,124 \cdot 10^{-7}$	$5,109 \cdot 10^{-7}$
0,3	3,832.10-7	$3,575 \cdot 10^{-7}$	$3,564 \cdot 10^{-7}$	3,563·10 ⁻⁷	3,563·10 ⁻⁷	$3,561 \cdot 10^{-7}$	3,555.10-7
0,4	$2,700 \cdot 10^{-7}$	$2,502 \cdot 10^{-7}$	2,493.10-7	2,493·10 ⁻⁷	2,492.10-7	2,491.10-7	2,488.10-7
0,5	$1,852 \cdot 10^{-7}$	$1,711 \cdot 10^{-7}$	$1,705 \cdot 10^{-7}$	$1,705 \cdot 10^{-7}$	$1,705 \cdot 10^{-7}$	$1,704 \cdot 10^{-7}$	$1,702 \cdot 10^{-7}$
0,6	$1,200.10^{-7}$	$1,112 \cdot 10^{-7}$	$1,108 \cdot 10^{-7}$	$1,108 \cdot 10^{-7}$	$1,108 \cdot 10^{-7}$	$1,107 \cdot 10^{-7}$	1,106.10-7
0,7	7,039.10-8	$6,567 \cdot 10^{-8}$	$6,546 \cdot 10^{-8}$	$6,545 \cdot 10^{-8}$	$6,544 \cdot 10^{-8}$	6,541·10 ⁻⁸	6,530·10 ⁻⁸
0,8	3,407.10-8	3,215.10-8	3,206.10-8	3,205.10-8	3,205.10-8	3,202.10-8	3,193.10-8
0,9	1,016.10-8	9,733·10 ⁻⁹	9,712·10 ⁻⁹	9,708·10 ⁻⁹	9,702·10 ⁻⁹	9,685·10 ⁻⁹	9,608·10 ⁻⁹
1,0	0,000	0,000	0,000	0,000	0,000	0,000	0,000

przenikalność i gęstość prądu. Z menu **Physics** wybieramy **Subdomain Settings** i pozostawiamy w większości nie zmienione wartości parametrów. Konieczne jest jedynie określenie:

- gęstości prądu w uzwojeniu (J^e_z obszar 4): obliczamy ją na podstawie wartości prądu i pola przekroju poprzecznego uzwojenia,
- 2) przewodności uzwojenia (σ obszar 4): możemy przyjąć przewodność miedzi σ = 60 MS/m,
- 3) przenikalności magnetycznej względnej ferromagnetyka (μ_r obszar 1): możemy przyjąć wartość 1e4.

5 Tworzenie siatki – Mesh Mode

Utwórzmy bardzo gęstą siatkę wybierając z menu **Mesh** opcję **Free Mesh parameters** i ustalając wielkość Predefined Mesh Sizes na Extremly fine. Wygenerowanie siatki nastąpi, gdy wybierzemy przycisk **Remesh**.

6 Rozwiązanie i prezentacja wyników – Solve, Postprocessing Mode

Wybranie polecenia **Solve Problem** z menu **Solve** uruchamia obliczenia. Po ich zakończeniu program przechodzi do trybu prezentacji wyników. Możemy wybrać wielkość prezentowaną na ekranie zmieniając ustawienia w oknie **Plot parameters**, w menu **Postprocessing**. Domyślnie przyjętym sposobem prezentacji jest wyświetlanie przyjętej wartości w całym analizowanym obszarze (zakładka **Surface**). Domyślnie wartością pokazywaną na ekranie jest indukcja magnetyczna (Magnetic flux density). Możemy sprawdzić jak wyglądają jej składowe (x, y component) i jakie wartości przyjmuje wektorowy potencjał magnetyczny **A**, a dokładnie jego składowa A_z (magnetic potential, z component).

Inne dostępne bezpośrednio wielkości to między innymi:

gęstość prądu (current density),

gęstość energii pola magnetycznego (magnetic energy density),

wydzielane ciepło (resistive heating),

natężenie pola magnetycznego (magnetic field).

Wybierając polecenie **Draw**, **Specify Objects** i **Line** rysujemy poziomą linię oddzielającą ferromagnetyk od powietrza (współrzędne x początku i końca linii: -0.05 0.05, współrzędne y wpisujemy takie, aby linia znalazła się na wysokości na której kończy się szczelina w ferromagnetyku).

Line	×
Coordinates	
x: -0.05 0.05	
y: b+0.5e-2 b+0.5e-2	Cancel
Style: Polyline	Apply
Name: B1	

Rys. 4 Line

3 Określanie warunków brzegowych – Boundary Mode

Możemy sprawdzić (**Physics**, **Boundary Settings**), że domyślnie przyjęte warunki brzegowe są ustawione prawidłowo. Niczego w tych ustawieniach nie zmieniamy.

4 Określanie parametrów materiałowych – Subdomain Mode

Subdomain Settings - Perpe	ndicular Inducti	on Currents, ¥ector Potential (e	:mqa)	×			
Equation							
$\nabla \times (\mu_0^{-1} \mu_r^{-1} \nabla \times \mathbf{A}) - \sigma \mathbf{v} \times (\nabla \times \mathbf{A}) = (\sigma \Delta \forall / L + J^{\mathbf{e}}_{_2}) \mathbf{e}_{_2}, \mathbf{A} = A_2 \mathbf{e}_2$							
Subdomains Groups Physics Infinite Elements Forces Init Element Color							
Subdomain selection	Material properties and sources						
1 A	Library material: Load						
3	Quantity	Value/Expression	Unit	Description			
4	¥	0 0	m/s	Velocity			
5	ΔV	0	۷	Potential difference			
B	L	1	m	Length			
	J ^e ,	0	A/m ²	External current density			
	σ	0	S/m	Electric conductivity			
	H ↔ B	$\mathbf{B} = \mu_0 \mu_r \mathbf{H}$		Constitutive relation			
Group:	μ	1e4		Relative permeability			
Select by group							
Active in this domain							
		ок	ancel	Apply Help			

Rys. 6 Subdomain Settings

Po utworzeniu geometrii zadania musimy zdefiniować co oznaczają poszczególne obszary. Robimy to określając parametry materiałowe takie jak przewodność,

II Metoda elementów skończonych

Przedstawimy teraz sposób wyznaczenia rozkładu pola magnetycznego wewnątrz żłobka metodą elementów skończonych przy całkowym sformułowaniu problemu. Zadanie rozwiązania równań dla potencjału wektorowego z odpowiednimi warunkami brzegowymi jest równoważne znalezieniu takiej funkcji A(x,y), która zapewnia minimum funkcjonału F(A) o postaci [1]:

$$F(A) = \int_{-a}^{a} \int_{0}^{b} \left[\left(\frac{\partial A}{\partial x} \right)^{2} + \left(\frac{\partial A}{\partial y} \right)^{2} - 2A\mu_{0}J \right] dxdy + \int_{c}^{-c} A \frac{\mu_{0}I}{c} dx$$
(17)

Minimalizację funkcjonału F(A) przeprowadzimy metodą elementów skończonych. W tym celu obszar wewnętrzny żłobka dzielimy na elementy trójkątne tak, aby granice między różnymi obszarami i brzegi żłobka pokrywały się z bokami znajdujących się w ich sąsiedztwie trójkątów (w ogólnym przypadku elementy nie muszą być trójkątami). Typowy element *e* o węzłach *i,j,k* przedstawiono na Rys 2.

Rys.2 Element skończony o węzłach i.j.k

Zakłada się, że A(x,y) wewnątrz elementu *e* jest liniową funkcją współrzędnych *x* i *y*:

$$A^{e}(x, y) = a_{e1} + a_{e2}x + a_{e3}y$$
(18)

W celu wyznaczenia współczynników a_{e1} , a_{e2} , a_{e3} , przyjmuje się, że wartości funkcji A(x,y) w węzłach elementu są dane i równe A_i , A_j , A_k . Po przeprowadzeniu prostych obliczeń otrzymujemy następującą postać funkcji $A^e(x,y)$:

$$A^{e}(x, y) = \left[N_{i}, N_{j}, N_{k}\right] \cdot \left[A_{i}, A_{j}, A_{k}\right]^{T} = \left[N\right] \left\{A^{e}\right\}$$

$$\tag{19}$$

gdzie :

$$N_m = \frac{1}{2\Delta} (a_m + b_m x + c_m y), \quad m = i, j, k$$
(20)

 Δ - pole elementu;

5

$$a_i = x_j y_k - x_k y_j$$

$$b_i = y_j - y_k$$

$$c_i = x_k - x_j$$
(21)

Pozostałe współczynniki otrzymuje się przez cykliczne przestawienie i, j, k.

W każdym elemencie szukana funkcja jest zatem przedstawiona w postaci wielomianu liniowego o znanej macierzy [N] i nieznanej macierzy $\{A^e\}$ wartości funkcji A w węzłach elementu. Problem wyznaczenia rozkładu funkcji A(x,y) sprowadzony został do znalezienia macierzy kolumnowej $\{A\}$ zawierającej wartości funkcji A we wszystkich węzłach o wymiarach NP×1 (NP – całkowita liczba węzłów utworzonych przy podziale rozważanego obszaru na elementy). Rozwiązanie uzyskuje się drogą minimalizacji funkcjonału F względem A_m , m = 1, 2, 3, ... NP. Warunek konieczny minimum ma postać:

$$\frac{\partial F}{\partial \{A\}} = \left[\frac{\partial F}{\partial A_1}, \frac{\partial F}{\partial A_2}, \dots, \frac{\partial F}{\partial A_{NP}}\right]^T = \{0\}$$
(22)

Ponieważ całkowity funkcjonał jest sumą składników pochodzących od poszczególnych elementów, tj.:

$$F = \sum F^e \tag{23}$$

Typowe równanie powyższego układu przybiera więc postać:

$$\frac{\partial F}{\partial A_m} = \frac{\partial \left(\sum F^e\right)}{\partial A_m} = \sum \frac{\partial F^e}{\partial A_m} = 0$$
(24)

gdzie sumowanie należy rozciągnąć na wszystkie elementy. W ten sposób otrzymuje się regułę budowania całego minimalizującego układu równań [1].

Literatura

1. R. Sikora: Teoria pola elektromagnetycznego, WNT Warszawa 1985

III Zadania

- 1. Dla podanych parametrów żłobka i przewodu obliczyć energię zgromadzoną w polu magnetycznym żłobka oraz indukcyjność rozproszeniową żłobka według wyprowadzonych analitycznie zależności (funkcja w programie MATLAB).
- 2. Zamodelować układ w programie COMSOL Multiphysics i obliczyć energię zgromadzoną w polu magnetycznym żłobka oraz indukcyjność rozproszeniową.
- 3. Porównać i skomentować otrzymane wyniki. Dla wyników uzyskanych przy różnych danych wykreślić zależność indukcyjności i energii od zmienianego parametru.

IV Żłobek maszyny prądu stałego w programie COMSOL Multiphysics 3.5a

1 Uruchomienie programu i wybór modułu

W oknie **Model Navigator** wybieramy układ współrzędnych dla wybranego zagadnienia (dwuwymiarowy) i moduł wykorzystywany do obliczeń.

(1) Na zakładce New powinien być wybrany układ 2D: Space dimension: 2D,

(2) w okienku wybieramy z listy kolejno:

AC/DC Module \ Statics, Magnetic \ Perpendicular Induction Currents \ Total potential

W dolnej części okna możemy sprawdzić, że tak jak w obliczeniach analitycznych, obliczenia metodą elementów skończonych będą wykonywane dla wektorowego potencjału magnetycznego A, który ma w tym przypadku tylko jedną składową: Dependent variables: Az.

2 Tworzenie geometrii układu – Draw Mode

Z menu programu wybieramy polecenia **Draw**, **Specify Objects** i **Rectangle** (Rys. 3). W lewej górnej części okienka określamy rozmiar (Size) prostokąta.

W polu Width wpisujemy szerokość, a w polu Height wysokość obiektu. Położenie obiektu (Position) określamy w lewej dolnej części okna, za pomocą współrzędnych jego środka (jeśli w polu Base wybierzemy Center), lub określając współrzędne lewego dolnego rogu (jeśli w polu Base wybierzemy Corner).

Rectangle	2		×
Size Width: Height:	0.1	Rotation angle a: 0 (degrees)
Position			
Base:	Center	Style: Solid	-
x:	0	Name: R1	
y:	0.02		
	OK Cancel	Apply Help	

Rys. 3 Okienko Rectangle

W ten sposób tworzymy kolejno cztery prostokąty:

1) środowisko otaczające żłobek

(szerokość: 0,1 m, wysokość: 0,1 m, środek w punkcie 0,0),

- 2) żłobek o wymiarach $2a \times b$ (szerokość×wysokość), umieszczony tak, żeby jego lewy dolny róg znajdował się w punkcie (-a, 0),
- 3) szczelinę między główkami zębów, o wymiarach $2c \times 0.5$ cm (umieszczamy ją nad żłobkiem, tak jak na Rys.1),
- 4) uzwojenie o wymiarach $2a \times g$ umieszczamy je wewnątrz żłobka tak, aby środek znajdował się w punkcie (0, h).